

Eurodia's Enology Department Membrane Solutions

- STARS Stab STARS pH (ED membrane)
- Paired XF Filtration
- Water saving (RO)

Proposed design – Semi-Automated Units

- 1,500 up to 12,000 l/h capacity
- Possible upgrade
- Crossflow filtration pairing option
- Automated processing / Manual CIP

Proposed design – Full-Automated Units

- 6,000 up to 24,000 l/h capacity
- Tank management
- Crossflow filtration pairing option

Mobile Service

Water saving

- Dedicated RO system
- On-line permeate recovery
- Minimum <u>50% recovery</u> up to 80%
- 2019 R&D Project: Zero Waste

Cold stabilized via 100% membrane process

Wine Tartrate Stabilization: Conventional Methods

- <u>Bulk Refrigeration</u> (most common)
 - o at low temperatures: precipitate & filter bitartrate, possible addition of cream of tartar
 - Wine must be clarified: affects its nature
 - Oxygen pick up, unreliable, time consuming, high energy & water consumption
 - Very long holding times
 - Wine losses (~1% to 2% of total volume treated)
 - Average pH shift of 0.03 to 0.08
- <u>Chemical additives (e.g.</u> metatartric acid, mannoprotein *low efficiency*, CMC not approved in many countries and not efficient for rosé and red wine, technical issues for sparkling, KPa same as CMC)

All additives remain in the wine after bottling (consumers?)

Ion exchange resin (not efficient, important pH drop, flavor impact)

STARS (Selective TARtaric Removal System) How does work?

Continuous operation, controlled by reduction of conductivity from tartrate removal, subtractive method, no additives, 100% reliable

System consists of three steps/processes:

- Determine reduction of conductivity to achieve stability via STABILAB
- Pass wine between the membranes to reduce conductivity by removing tartrates, potassium and calcium via STARS.
- Monitor conductivity to ensure stability via onboard conductivity meter

Right Technology, Right Time

STARS/Electrodialysis helps resolve current issues

- Increase production without increasing infrastructure
- Wine-just-in-time... (Centrifuge-STARS_{Line}-Bottling)
- Inventory depletion of hot-selling whites
- Red wine instability issues due to reduced barrel count and shortened release dates
- Manage pH and TA issues
- Eliminate juice loss when stabilizing grape juice for grape concentrate
- Environmental sustainability "California Flex Your Power" award

OENGOIN _____

What is STARS

STARS/Electrodialysis clockwise from top left

- STABILAB predictive & verification test (DIT test /ISTC50 test)
- STARS unit 6 to 12,000 l/hr
- RO for water saving

STARS – DIT -> STARS -> ISTC50 A comprehensive approach to Tartrate Stabilization

STABILAB

DIT test to predict tartrate instability, STARS processing rate ISTC50 test, confirmation test post STARS treatment

(DIT- Degree of Tartaric Instability) (ISTC50- Critical Tartaric Stability Index)

STARS

Full-automated operation system Can run 24 hours per day with 2 CIP's each taking about 1.5 hrs. (~20hrs/day)

Reverse Osmosis for STARS System

An Optional Reverse Osmosis unit (RO) can reduce total water consumption from 50% to 90%.

Reverse Osmosis unit is linked to STARS unit during processing (auto-stop function)

DIT test Test INRA - 4C° / 4 h

STARS Tartaric Stabilization

Two-Chamber Membranes

STARS Tartaric Stabilization: How it works?

STARS - 20 years experience - What has Changed?

- Compact design
 - Reduced foot print
 - Facilitates handling and use
 - Reduced overall cost
- Corrected pH drop Now equal to Cold Stability pH shift
- Reduced overall water consumption < 5%
- Confirmed flavor neutrality / improvement
 - By independent tasting panels
 - On whites neutral to favorable
 - On reds preferred

STARS in Operation

- Automated operation, regulated by conductivity or pH
 - Onboard / Inline conductivity meter
 - Hand-held conductivity meter for verification (included)
 - 12hr run cycle after which a CIP is required
- Single pass, tank to tank processing
- Pre-filtration at <5 μm required, preferably via XF
- Wine should be at cellar temperature
- No wine loss
- No oxygen pick up
- Time saving: 6,000 l/hr, 20 hr processing = ~ 120,000 l
- Power consumption: 0,002 KW/l
- Water consumption: 2% to 5% of total wine volume

STARS Quick overview

Sustainability & Cost Savings:	 Lowest energy use: 0.002 KW/l vs. 0.03 to 0.04 KW/l for Cold Stabilization No wine loss – saves at least to 1% of total wine volume Low water consumption – 2% to 5% of total wine volume processed Save Tartaric Acid / Eliminate use of Cream of Tartar
Comprehensive:	 Predict, Stabilize, Confirm – create a standard for tartrate stability (STABILAB-DIT Test -> STARS -> ISTC50 Test -> Bottling)
Guaranteed:	 STARS stabilized wines cold stability for 6 days at -4°C (DIT at -4°C) / Achieves Calcium stability
Reliable:	 In-line conductivity probe & continuous verification of target Conductivity based on DIT test result.
Flexibility:	 1,500 to 24,000 l/hr larger units available No tank holding time Immediately bottle ready

Learning from 20 years experience & current STARS owners

- pH drop too high (between 0.05 and 0.20)
 - STABILAB-DIT test was performed at -4°C to guarantee high stability (6 days at -4°C). Wineries don't Cold Stabilize to -4°C. Most common temperatures are between -2 and -1°C.
 - <u>STABILAB DIT now mimics the winery's CS temperature e.g., -2°C, -1°C, 0°C etc.,</u> resulting in substantially lower drop in conductivity achieved during processing
 - A highly unstable wine tested at -4°C produced a DIT rate (STARS treatment rate) of 28%. Changing the temperature to -1°C dropped the DIT rate to 22%. <u>pH shift changed from 0.2 to 0.08</u>
- <u>Wines treated at a reduced DIT rate can be managed by conductivity or pH,</u> resulting in equal or less pH drop compared to CS and with higher stability
- Water consumption too high (up to 15%)
 - Water consumption used to be 10% of total wine volume
 - Using a Reverse Osmosis unit, water consumption has been reduced to 2% to 5% of total wine volume

DENGOIN The additive free solution

GENGOIN WINE-JUST-IN-TIME

BRIGHTNESS

Cross flow filtration

MICROBIOLOGICAL STABILITY

TARTARIC STABILIZATION

Electrodialysis

AICOMED

GENERAL CONCLUSIONS

"Electromembrane" processes

- Electricity as driving force chemicals
- □ Substractive technology: NO chemical addition to your feed
- Maintain feed structure: high quality
- Perfect control: high precision treatment
- pH adjustment: accurate technology
- **Continuous process: saving time and manpower**
- IF YOU ARE LOOKING FOR ECO-FRIENDLY METHODS, THINK STARS!

1,500 L/h

18,000 to 24,000 L/h

STARS design 6,000 to 12,000 L/h

KEEP IT NATURAL ! Cold stabilized your wines without chemical additives with

OENODIK _

OENODIA ZAC ST MARTIN IMPASSE ST MARTIN 84120 - PERTUIS - FRANCE TEL : +33 (0)4 90 08 75 00 commercial@oenodia.com

www.oenodia.com